This is ACA # 33. It is OK to use your textbook, but if you can answers the questions without it that is OK too.

I recommend you print out this page and bring it to class. <u>Click here</u> to show a set of five ACA33 student responses, randomly selected from all of the student responses thus far, in a new window.

John , here are your responses to the ACA and the Expert's response.

For this ACA we will use this short version of the **Standard Reduction Potential Table**.

Answer the following questions using the SRP Table.

1a. Calculate the standard cell potential for the reaction

$$3Mg(s) + 2Al^{3+}(aq) ----> 3Mg^{2+}(aq) + 2Al(s)$$

 $E^{o} = +0.701$ volts 94%

From the SRP Table

Reduction half-reaction	E ⁰ (volts)
$Al^{3+}(aq) + 3e^{-}> Al(s)$	-1.66
Mg ²⁺ (aq) + 2e ⁻ > Mg(aq)	-2.36

 $E^{o}_{cell} = E^{o}_{cathode} - E^{o}_{anode} = -1.66 - (-2.36) = +0.70$ volts

b) What is the value of K for the reaction in Question 1a.

 $(\Delta G^{o} = -nFE^{o} \text{ where } F = 96,500 \text{ J volt}^{-1}$

and $\Delta G^{o} = -RT \ln K$ where $R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$

so $E^{o} = RT/nF \ln K$ or $E^{o} = 0.0257/n \ln K$

n is the number of electrons transferred in the balanced chemical equation)

K = 1.19e71 $\frac{9}{0}$ E^o = 0.0257/n ln K +0.70 volts = (0.0257/6) ln K

ln K = +0.70 volts (6/0.0257) = 163.42

 $e^{\ln K} = e^{163.42}$

 $K = 9.42 \times 10^{70}$

c) For the E° calculated in 1a what are the standard concentrations for $[Al^{3+}]$ and $[Mg^{2+}]$?

 $[Al^{3+}] = [Mg^{2+}] = 1 M$ $\Re\%$

 $[Al^{3+}] = [Mg^{2+}] = 1.0 M$

2. Given that $E_{cell} = E^{o}_{cell}$ - (0.0257/n) ln Q complete the missing cells in the table below

Experiment	[Al ³⁺]	[Mg ²⁺]	E ^o cell (volts)	E _{cell} (volts)	$\frac{Q}{([Mg^{2+}]^3/([Al^{3+}]^2))}$
1	1.0 M	1.0 M	+0.70	+0.70	$\begin{array}{c}1\\Q=1 \begin{array}{c}9\\7\\7\\7\end{array}$
2	0.5 M	1.75 M	+0.70	0.69 E _{cell} = +0.69 volts	21.4
3	0.050	3.04 M	+0.70	+0.66	1.13e4

	M	[Mg ²⁺] = 2.425 M			$Q = 5.70 \times 10^3$
4	0.0010 M	2.499 M	+0.70	+0.63	1.56 x 10 ⁷
5	1.0 x 10 ⁻¹⁰	2.500 M	+0.70	+0.50	1.56 x 10 ²¹

Experiment #1: Q = $[Mg^{2+}]^3/([Al^{3+}]^2 = [1]^3/([1]^2 = 1)^3)$

Experiment #2:

 $E_{cell} = E^{o_{cell}} - 0.0257/n \ln Q$

 $E_{cell} = E^{o_{cell}} - 0.0257/n \ln [Mg^{2+}]^3/([Al^{3+}]^2)$

 $E_{cell} = +0.70 \text{ volts} - 0.0257/6 \ln [0.50]^3/([1.75]^2)$

 $E_{cell} = +0.70 \text{ volts} - 0.0257/6 \ln [0.50]^3/([1.75]^2)$

 $E_{cell} = +0.70 \text{ volts} - 0.0257/6 \ln 21.4 = +0.70 \text{ volts} - 0.013 \text{ volts} = +0.69 \text{ volts}$

Experiment #3:

	3Mg(s)	+ 2Al ³⁺ (aq)	>	3Mg ²⁺ (aq)	+ 2Al(s)
Initial		1.0 M		1.0 M	
Change		-0.95 = -2(0.475)		+1.425 = 3(0.475)	
Final		0.05		2.425	

NOTE: We must set up an ICE table to determine the final $[Mg^{2+}]$ when the final $[Al^{3+}]$ is 0.050 M. The final $[Mg^{2+}] = 2.425$ M

 $Q = [Mg^{2+}]^3 / ([Al^{3+}]^2 = [2.425]^3 / ([0.05]^2 = 5.70 \times 10^3)^3)$

69%

3a. What happens to the value of Q as the reaction proceeds from left to right?

Q increases 94%

Looking at the table for the set of five experiments, as we proceed from Exp #1 to Exp #5 the reaction is proceeding from left to right. As the reaction proceeds from left to right Q is getting larger.

b. What happens to the cell potential as the reaction proceeds from left to right?

E° decreases

Looking at the table for the set of five experiments, as we proceed from Exp #1 to Exp #5 the reaction is proceeding from left to right. As the reaction proceeds from left to right E_{cell} is getting smaller

Ecell & Ecell

c. What value is E_{cell} approaching as the reaction proceeds from left to right?

0 volts

75%

 E_{cell} is getting smaller and smaller as the reaction proceeds from left to right, so E_{cell} is approaching 0.

d. What value is Q approaching as the reaction proceeds from left to right?

K (1.19 e71

Q is getting larger and larger as the reaction proceeds from left to right, so Q is approaching K, the equilibrium constant for the reaction.

4a. When Q is greater than 1 what is the sign of ln Q?

positive (positive or negative) 75%

If Q is greater than 1 than the natural log of a number greater than 1 is positive.

b. When Q is less than 1 what is the sign of ln Q?

negative (positive or negative) 75%

If Q is less than 1 than the natural log of a number less than 1 is negative.

c. When Q is greater than 1 is E_{cell} greater than, less than or equal to E^{o}_{cell} ?

less than

94%

If Q is greater than 1 than the natural log of a number greater than 1 is positive and as show in the equation,

 $E_{cell} = E^{o_{cell}} - 0.0257/n \ln Q$

E_{cell} will be smaller compared to E^o_{cell}.

d. When Q is less than 1 is E_{cell} greater than, less than or equal to E^{o}_{cell} ?

greater than 100%

If Q is less than 1 than the natural log of a number less than 1 is negative and as show in the equation,

 $E_{cell} = E^{o_{cell}} - 0.0257/n \ln Q$

 E_{cell} will be larger compared to $E^{o_{cell}}$.

5. Is there anything about the questions that you feel you do not understand? List your concerns/questions.

nothing

6. If there is one question you would like to have answered in lecture, what would that question be?